
Written Exam for the M.Sc. in Economics, Winter 2019-20

Advanced Macroeconomics: Structural Vector Autoregressive Analysis: Solution

About the exam

The topic for this project examination is the money demand function stating that the demand

for money is a function of interest rates and output. The standard long-run money demand

function can be written as

m = β0 + β1y + β2(rS − rO) (1)

where m is the natural logarithm of real money balance (M/P ), y is the natural logarithm of

real GDP, rS is the short-run interest rate and rO is the �own rate� of return of components

in the money stock. The spread (rS − rO) represents the opportunity cost of holding money

balances.

There is a large literature estimating this money demand function and studies of the e�ects

of monetary policy. One puzzle that emerges in this literature is that restrictive monetary

policy (an increase in the money market rate) is associated with increased prices. There have

been many attempts in the literature to understand and/or explain this result. The present

assignment provides an additional approach to investigate this puzzle.

Approximate the spread using the money market rate, i.e., r = (rS − rO). We can then

rewrite the money demand function above as the following long-run relationship

m = β0 + β1y + β2r. (2)

This implies that if the variables in the equation above are I(1)-processes, then the three

variables must cointegrate.

Regarding the data for the exam paper, please note the following:

� All assignments are based on di�erent data sets. You should use the data set (monthly

data covering the period 1979:02-2003:12) located in the MATLAB �le 1234.mat, where

1234 is your exam number. This MATLAB �le contains the data (y), the dates (dates)

and the name of the variables (names). You can load this �le into MATLAB directly

using 'load 1234.mat'. In case you cannot �nd your exam number, you can use the

1000.mat �le.

� To avoid that some data sets are more di�cult to handle than others, the data sets are

arti�cial (simulated from a known data generating process), and they behave, as close

as possible, like actual data.

The proposed solution below is based on the dataset 1000.mat

1. The data is already in natural logarithms (real money balance and real GDP are in logs

whereas the money market rate is in percent). Plot the data and perform graphical

analysis in order to assess the degree of integration of all three variables.

Answer:

As is evident from this graph, there seems to be linear trends in the data. Output Y is

increasing over time whereas M/P is decreasing. It may be that there is a linear trend in the

interest rate spread also. However, it is an empirical question whether a linear trend is needed

in the cointegration vector.
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Figure 1: Money demand data.
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The Vector Error Correction Model

Suppose that the three variables in the money demand function are either I(1) or I(0) and that

the underlying data generating process is a trivariate Vector Autoregressive (VAR) model,

yt = ν +A1yt−1 + . . .+Apyt−p + ut (3)

where yt =
[
m y r

]′
, p is the lag length, ν is a constant term and ut is a trivariate zero

mean white noise process with covariance matrix Σu such that ut ∼ (0,Σu). Then we can

rewrite the VAR model as the following Vector Error Correction (VEC) model

∆yt = ν + Πyt−1 + Γ1∆yt−1 + . . .+ Γp−1∆yt−p+1 + ut (4)

where

Π = −
(
I3 −A1 − . . .−Ap

)
and

Γi = −
(
Ai+1 + · · ·+Ap

)
for i = 1, . . . , p− 1.

The rank of Π is equal to the number of cointegration vectors r and can be decomposed as a

product of two 3×r matrices of full rank, Π = αβ′ where α is the 3×r adjustment coe�cients

and β is the 3× r cointegration vectors.

2. Formulate a well-speci�ed VEC model for yt similar to the VEC model above. Explain

your work�ow and how you argue for your choice of the number of autoregressive lags

in the VEC model (and in its associate VAR model).

Answer:
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There are several di�erent approaches that can be used to determine the number of

lags in the underlying VAR model. All approaches are based on estimates of a VAR

in levels with a constant term. Three approaches have been used during the course:

lag length determination using information criteria, general-to-speci�c and speci�c-to-

general sequences. It is irrelevant which one is used here. All approaches should lead

to the same lag length. The �rst step in empirical VAR analysis is to determine the

lag length in the underlying VAR. Regardless, it is important that the work�ow is

explained. Here we will apply information criteria (Akaike, Schwarz and Hannan-Quinn)

and choose the lag length that minimizes these measures. The work�ow should start

with a maximum lag length and then we compute these criteria for each lag length

p = 0, . . . , pmax using the same number of observations for each lag length. The function

p�nd.m produces the following output assuming that pmax = 36 (but we only report the

information criteria for lags less than or equal to 10). As is clear from this table, the

lag length suggested by all criteria is equal to 2. The same result holds for all data sets

and all approaches.

p SIC HQC AIC

0 -14.976 -15.001 -15.017

1 -28.461 -28.558 -28.623

2 -28.771 -28.941 -29.056

3 -28.618 -28.861 -29.024

4 -28.461 -28.777 -28.989

5 -28.298 -28.687 -28.948

6 -28.122 -28.584 -28.894

7 -27.964 -28.499 -28.858

8 -27.815 -28.422 -28.83

9 -27.693 -28.374 -28.831

10 -27.549 -28.302 -28.808

Alternatives to using information criteria as outlined above is to use one of the following

approaches:

� Top-down sequential testing (general-to-speci�c): The VAR(p) model is

yt = ν +A1yt−1 +A2yt−2 + . . .+Apyt−p + ut

where ν = A0. Start with a maximum number of lags pmax testing a sequence of

null hypotheses: H0: Apmax
= 0 vs. H1: Apmax

6= 0, H0: Apmax−1
= 0 vs. H1:

Apmax−1
6= 0, ..., H0: A1 = 0 vs. H1: A1 6= 0. Process terminates when there is a

rejection. Use Wald or LR tests.

� Bottom-up sequential testing (speci�c-to-general): Reverse the procedure above,

start with pmin testing for autocorrelation in the residuals (using for example a

multivariate test). Add lags until there is no signi�cant autocorrelation.

Answers using either of these two approaches should also be accepted and receive full

points if correctly implemented and explained.
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3. Test for multivariate autocorrelation, heteroscedasticity and normality. Does your model

satisfy the underlying assumptions?

Answer: To verify that the model is well-speci�ed when assuming that the lag length

is equal to 2, we next test for autocorrelation and heteroscedasticity in the residuals and

the null hypothesis that the residuals are normally distributed. We should use multivariate

tests provided in the functions: portman.m, march.m and multnorm.m. First we need to

re-estimate the VAR(2) model using VARls.m. We allow for a constant term but no linear

trend. The argument used to exclude a linear trend is that the VAR in levels can be re-written

as a VAR in �rst di�erences (and as a VEC model) by subtracting yt−1 from both sides of the

levels VAR leaving the constant term and the residuals una�ected.

Start with the multivariate test for autocorrelation. We need to specify the horizon used

when computing the test statistic. We start with horizon equal to 12. The portman.m function

gives us the following result:
1/20/20 9:22 AM MATLAB Command Window 1 of 1

Portmanteau test
             Test              Statistic
    _______________________    _________
 
    Tested order:                   12  
    Test statistic              86.681  
    p-value                     0.5795  
    Adjusted test statistic     88.868  
    p-value                    0.51395  
    degrees of freedom              90  
 

indicating that we cannot reject the null hypothesis of no autocorrelation in the residuals.

Next, we test for multivariate ARCH using the march.m function. The results suggest

that we, for number of lags = 6 cannot reject the null hypothesis that there are no ARCH

e�ects in the residuals at the 5 percent level.
1/20/20 9:26 AM MATLAB Command Window 1 of 1

Tests for Multivariate ARCH
           Test           Doornik_Hendry
    __________________    ______________
 
    test statistic:        236.82       
    p-value               0.15793       
    degrees of freedom        216       

Finally, we test for normality using the multnorm.p function.
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1/20/20 9:26 AM MATLAB Command Window 1 of 1

Tests for non-normality
            Test             Doornik_Hansen    Lutkepohl
    _____________________    ______________    _________
 
    joint test statistic:    1602.6              1395   
    p-value                       0                 0   
    degrees of freedom            6                 6   
    Skewness only            200.28            178.51   
    p-value                       0                 0   
    kurtosis only            1402.3            1216.5   
    p-value                       0                 0   

The joint test statistic suggests a rejection of the null that the residuals are normally dis-

tributed. Individual tests suggests the presence of kurtosis but no skewness at the 5 percent

level. This result is common in most data sets and should not pose a serious problem for the

following analysis.

Overall these test statistics suggest that the model with p = 2 is fairly well-speci�ed.

Adding one lag does not solve any problems detected by the normality tests. A good answer

provide a discussion and should end with the conclusion that p = 2 seems reasonable.

Testing for cointegration

4. For your preferred model, proceed by testing for cointegration using the MATLAB func-

tion jcitest. Explain your approach and how you proceed to �nd the number of coin-

tegration vectors in the system, that is the rank r. Do you use di�erent sources of

information when determining the rank? If so, explain how you arrive at your decision.

Answer: Assuming that p = 2 in the underlying VAR implies that there is only 1 lag

in the VEC model. Remember that the MATLAB function jcitest requires the user to

specify p − 1 instead of p, a good answer must explicitly mention the number of �rst

di�erence lags used in the tests. Using the jcitest function we obtain:1/20/20 9:42 AM MATLAB Command Window 1 of 1

r  h  stat      cValue   pValue   eigVal   
----------------------------------------
0  1  41.7123   29.7976  0.0018   0.1030  
1  0  9.3206    15.4948  0.3838   0.0290  
2  0  0.5413    3.8415   0.6186   0.0018  

Starting with the hypothesis that r = 0 we �nd that the null hypothesis that r = 0 is

rejected at the 1 percent level. Increasing the rank we �nd that we cannot reject the

null that r = 1. The data, therefore, suggest the presence of 1 cointegration vector.

This result holds for any lag length ≤ 6. So if it was decided to increase the number

of lags in the underlying VAR above to handle the autocorrelation and ARCH �ndings,

the Johansen test still suggest the presence of 1 cointegration vector.

We can use the estimated eigenvalues as an alternative source of information when

determining the rank. As is clearly illustrated in the table above, the eigenvalue falls
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substantially when increasing the rank. Our conclusion that the rank is equal to 1 is

clearly supported.

A good answer must include a description of the approach, the so called Pantula prin-

ciple, where we start by considering the null hypothesis that the rank is 0 and then we

test the null that the rank is 1 and so on. A sensitivity analysis of the unimportance

of the number of lags should also be included. As mentioned above, the answer must

explicitly state how many lags there are in the VEC model estimation.

5. Discuss and argue for the preferred way to include deterministic components in the

model. Perform a test of the null hypothesis that there is no linear trend in the cointe-

gration vectors.

Answer: The Johansen test computed above rests on the assumption that there is no

linear trend in the cointegration vector. We can distinguish between �ve di�erent cases

depending on assumptions about deterministic components. In our case, it is evident

that we need a constant term in the VEC model. The question is whether we also should

add a linear trend, either a linear trend in the cointegration vector but no quadratic trend

in the data or allowing for a quadratic trend in the data.

We can test the null hypothesis that there is a linear trend in the cointegration vector

using the jcontest function in MATLAB. The MATLAB code to be used is:

[h,pValue] = jcontest(y,1,'Bcon',[0 0 0 1]','model ','H*','lags',p-1);

Executing this command we �nd a test statistic of 0.4331 with a p-value of 0.5105, thus

indicating a non-rejection of the null hypothesis that the linear trend can be excluded

from the cointegration space. This holds for all data sets.

A good answer should include a formal test of this null hypothesis and a motivation

based on the graph of the cointegration vector where it can be seen that there is no

apparent linear trend. Below is a graph of the unrestricted cointegration vector.
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6. Impose your preferred rank and test hypotheses on the cointegration space using the

MATLAB function jcontest. Start with tests for exclusion, stationarity and weak exo-

geneity. Explain the meanings of these tests.

Answer: Stationarity test, exclusion tests and tests for speci�c cointegration vectors

are related. If one variable can be excluded from the cointegration space, then we expect

to reject cointegration vectors where this variable is included. If a variable is stationary,

then this variable forms a cointegration vector where all other variables are excluded.

Weak exogeneity implies that there is no error correction in the associated equation. In

this case, that equation can be excluded from the VEC model. The test results should

be consistent, but this may not always be the case in practice.

Using this data set we �nd that we always reject the null hypothesis that the variables

are stationary. Tests for weak exogeneity suggest that we can reject the null that real

money balance and the interest rate spread can be excluded from the cointegration

vector whereas real money balance is weakly exogenous. A good answer should include

the test statistics and an explanation of the tests. Results may di�er across the data

sets.

7. Estimate the parameters in the cointegration vectors and interpret these in light of

the money demand function above. Do you �nd plausible values of the parameters in

the cointegration vectors? Test null hypotheses using the MATLAB function jcontest.

Explain how this test relates to the exclusion and stationarity tests.

Answer: A good answer must include an estimate of the unrestricted (but normal-

ized) cointegration vector. The unrestricted estimated money demand function (the

cointegration vector) is:

M/P = 0.2152× Y − 8.5361× r

We can compare this vector to, for example, the papers included in the curriculum.

We �nd that the estimates above are clearly in the range of common estimates in the

literature using di�erent data sets. Real money balance is often related to output in a

one-by-one relation but here we �nd a much smaller parameter estimate (but not uncom-

mon in the literature) and the interest rate elasticity parameter conforms to standard

estimates. It seems that we can interpret the cointegration vector as a money demand

function (signs are correct and parameter estimates close to standard estimates). A good

answer also includes a fromal test of the null hypothesis that the parameter associated

with output and the real money balance are equal but of opposite sign. An estimate of

the restricted cointegration vector must be included.

8. Split the sample into two equal sized sub-samples and perform tests for exclusion, sta-

tionarity and weak exogeneity. Comment on the importance of the sample length for

these tests.

Answer: Here we will �nd that the information criteria still suggest that p = 2, Jo-

hansen tests are often but not always consistent. For this data set we �nd that the rank

may be equal to 2 in the �rst part of the sample but equal to one in the latter part of
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the sample. Tests for stationarity, exclusion and weak exogeneity also change. This il-

lustrates that the sample length is of importance for results but this fact must be viewed

in light of the power of the tests. Using few observations may bias the test statistics and

it is of importance to test for stability. We know that the Johansen test and tests on

the cointegration vectors in particular are biased in small samples. For our sample sizes

(and of course the simulated data) we only �nd that tests on the cointegration vector

change when reducing the number of observations. The cointegration vector, given lag

length equal to 2 and no linear trend in the cointegration vector, may not always be

consistent with the full sample estimates.

9. Impose r = 1 and and re-estimate the VEC model using the full sample and using your

preferred lag length found above. Comment on the driving forces of the data in this

model.

Answer: We can estimate the VEC model with known cointegration vector using either

LS or ML. In our model we have rank equal to 1 and 3 variables. This implies that there

are 2 common trends driving the 3 variables. These two common trends determine the

long-run behavior of the three time series, that is, they have long-run e�ects on all

variables. Since we have one cointegration vector, we have 1 transitory shock a�ecting

the variables only in the short-run.

A good answer includes both estimates of the VEC model and a short discussion about

the driving forces as above.

Identi�cation of structural model

10. Suggest identi�cation schemes including names of the three structural shocks in the

VAR/VEC system using �rst a Cholesky decomposition and second long-run identi�ca-

tion. If you cannot provide names for these shocks, try to explain how they a�ect the

data under the maintained assumptions.

Answer: First of all we need to decide upon the ordering of the data. Monetary

policy (the interest rate spread) should respond to all three shocks in the VAR system

and output may respond with a lag to monetary policy. Then, it is a matter of choice

whether real money balance should respond immediately to output shocks or not. In the

curriculum, we have discussed a number of papers estimating the e�ects of monetary

policy during the course (Sims, Eichenbaum and Uhlig). Common in these papers is

that the interest rate spread is the last variable in the system (given that we use a lower

triangular Cholesky decomposition). Sims usually put the money stock and prices above

output whereas Eichenbaum and Uhlig often put output �rst in the time series vector.

We follow Uhlig and Eichenbaum and de�ne the time series vector as yt =
(
y m r

)′
.

This ordering is also preferable when taking cointegration into account. In this case we

may want to put output �rst (arguing that the �rst permanent shock is a productivity

shock) and assume that the other two shocks do not a�ect output in the long-run. This

is standard in the literature. Then we may interpret the second shock as a real money

balance (or demand) shock having no long-run e�ect on output.
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A good answer must include a discussion along the lines above.

11. Write down the reduced form and structural form Common Trends model consistent

with the VEC model. Show how these two representations are related.

Answer: The underlying VAR model can be rewritten as the following VEC model

∆yt = αβ′yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut

where α is the adjustment coe�cients and β is the cointegration vector. The VEC model

can then be rewritten as a Common Trends model

yt = Ξ
t∑

i=1

ut + Ξ∗(L)ut + y∗0

where

Ξ = β⊥

[
α′⊥

(
IK −

p−1∑
i=1

Γi

)
β⊥

]−1

α′⊥

where α⊥ and β⊥ are orthogonal complements to α and β respectively. The structural

Common Trends model can be written as

yt = Ξ
t∑

i=1

B−1
0 wi + Ξ∗(L)B−1

0 wt + y∗0

yt = ΞB−1
0︸ ︷︷ ︸

Υ

t∑
i=1

wi + Ξ∗(L)B−1
0 wt + y∗0 = Υ

t∑
i=1

wi + Ξ∗(L)B−1
0 wt + y∗0

where Υ is the matrix of long-run multipliers, it measures the long-run e�ect of the com-

mon trends (or the permanent shocks). Note that the long-run e�ects of the stationary

part Ξ∗(L)B−1
0 wt goes to zero as j → ∞. The rank of Υ is the same as the rank of Ξ,

i.e., rank K − r.
Long-run restrictions can be imposed directly on Υ, if the long-run e�ect of a shock

is zero on all variables, then the corresponding column of Υ is restricted to zero. To

identify the transitory shocks we impose restrictions on B−1
0 , in particular, we impose

restrictions on the last r columns of this matrix.

The interpretation of the permanent and transitory shocks in the current setting is

discussed above. We associate the two permanent shocks with productivity and real

money balance shocks. These shocks have permanent e�ects on at least one of the

three variables in the system. To just identify these two shocks we need to introduce

one restriction. We then have one transitory shock, the monetary policy shock. This

shock does not have any long-run e�ect on the three variables. Since there is only

one transitory shock, it is identi�ed (since the permanent and transitory shocks can be

identi�ed independently).

A good answer must include a discussion of possible shocks a�ecting the VAR/VEC

system. The arguments above may not be the only available option, but it is essential

that the answer includes a motivation and main arguments based on economic model or

intuition.
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12. What is the consequence for the long-run multiplier if we assume that the long-run

money demand function is a cointegration vector?

Answer: The long-run multiplier Υ is a 3 × 3 matrix where the third column is zero

since the long-run e�ects of the transitory shock on all variables is zero. To identify the

permanent shocks we use the condition that β′Υ = 0.

13. Outline how the MATLAB solver can be used to impose long-run restrictions.

Answer: The following code implements the restriction:

% restrictions.M

% Normalization: SIGMA_w=I

function q=restrictions(B0inv)

global GAMMA SIGMA alpha beta alpha_perp beta_perp Xi p

K=size(B0inv,1);

THETA1=Xi*B0inv;

F=vec(B0inv*B0inv'-SIGMA(1:K,1:K));

% Long run and short run restrictions

q=[F; THETA1(2,1); THETA1(1,3); THETA1(2,3); THETA1(3,3)];

q'+1;

where the notation is standard.

Impulse responses and forecast error variances

14. Estimate a VAR model (using your preferred number of lags found previously) with all

variables in log-levels and use this model together with a Cholesky decomposition to

compute impulse response functions. Discuss and explain how you order the time series

vector, i.e., explain and motivate the identifying restrictions you use. Show the impulse

responses in a graph and interpret your results. Comment on the price puzzle. Is it still

there in the model or not? If not, try to provide an explanation. No con�dence bands

are required.

Answer: Use the ordering of the variables above and estimate a VAR in levels with a

linear trend and using a lower triangular Cholesky decomposition we can compute the

impulse response functions. We have decided to include a linear trend since the graphs of

the data suggest that, at least, two of the time series were trending. Using the ordering

suggested above and a lower triangular Cholesky decomposition we �nd the following

impulse responses of all three variables to a monetary policy shock. All data sets should

generate the same patterns as below but point estimates could di�er.
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A positive monetary policy shock initially increases output but after a few quarters,

output falls. The e�ect on real money balance is negative. A higher interest rate should

be associated with a reduction in the money supply and if the price level falls with a

lag and slower than the rate by which the money supply falls, then real money balance

should fall as implied in the graph above. If money supply is constant, real money

balance should increase since the higher interest rate should lead to a lower price level.

This alternative interpretation is not consistent with the impulse response above. The

prize puzzle often found in the literature implies that a higher interest rate is associated

with higher price level. Holding money supply constant, a higher price level would also

reduce real money balance. This case is also consistent with the impulse response above.

It is therefore unclear whether we have solved the price puzzle or not. However, a likely

scenario is that the higher interest rate reduces the money supply and that the price

level responds to the higher interest rate with a time lag. This is consistent with the

impulse response where we obtain a large fall in the real money balance in the short run

and then as the price level falls, real money balance increases slowly over time. A good

answer must include interpretation and discussion.

15. Instead of using a standard VAR and recursive identi�cation we can identify the model

using a combination of short-run and long-run identifying restrictions. Use the MAT-

LAB solver to identify the structural VEC model estimated previously. Check that the

solver provides a valid identi�cation and compute the variance-covariance matrix of the

identi�ed structural shocks. Please, provide the MATLAB code you are using to identify

the shocks in the appendix. It must include a description of the null restrictions you

impose.

If you fail computing the B−1
0 matrix using the MATLAB solver, please use the ident.p

�le. This �le works as a standard m-�le but the coding is concealed and there is no

way to convert the p-�le into an m-�le. Note that the ident.p �le is set up to use the

closed form solution to compute the B−1
0 matrix using a generic identi�cation based on
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estimates from the VEC model. To use this function, you need to add the following

code to your MATLAB m-�le and you need to set the rank equal to 1. You can use any

number of lags. Note: Make sure that you don't have any ident.m �les in the same folder.

The same function can be used in a bootstrap. Note also that it will be impossible to

interpret the impulse response function and the variance decomposition using economic

theory.

% Use generic identification

% Input:

% alpha is the 3 x 1 adjustment coefficient matrix

% beta is the 1 x 3 cointegration vector [beta1 beta2 beta3]

% Gamma = [ Gamma(1) Gamma(2) .... Gamma(p-1)] coefficent matrix

% sigmahat = Sigma_u (the residual covariance matrix)

% K = 3

% p = number of lags in underlying VAR

% r = 1

%

% Output:

% inverse of B0 matrix

[invB0]=ident(alpha,beta,Gamma,sigmahat,K,p,r)

Answer: The MATLAB code provided in the answer to question 13 above can be

used to estimate the structural model. Note that the ident.p �le implements another

identi�cation scheme, it may not be possible to provide an interpretation of the two

permanent shocks in this case. However, using this generic identi�cation allows the user

to estimate a structural model. In either case, it is necessary to show that the solver

has found a proper solution. Apart from providing an estimate of the B−1
0 matrix, it

is necessary to show the following matrices: B−1
0 (B−1

0 )′ − Σu which should be equal to

zero; Υ which should include the zero restriction imposed on one element in the �rst

two columns; B0ΣuB
′
0 which is the variance-covariance matrix of the structural shocks

wt which should be an identity matrix.

A good answer implements the proposed identi�cation correctly and should also provide

statistics verifying that the solution is valid using the statistics mentioned in the previous

paragraph.

16. Estimate the structural VAR model and compute impulse response functions (with boot-

strap con�dence bands using the delta method, i.e., the standard residual based recursive

design bootstrap with intervals based on bootstrap standard errors) and variance de-

compositions (with bootstrap standard errors using Efron's percentile intervals). You

can show forecast error variance decompositions in either a table or in a graph. Interpret

your results.

Answer: The impulse responses to a positive shock to the interest rate spread is shown

in the �gure below together with the 95% con�dence bands generated using standard

residual based bootstrap with 500 trials. The responses are quite di�erent from what

we obtained using the Cholesky decomposition. An increase in the interest rate spread

is now associated with an increase in output, which is clearly against convention, while
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Figure 2: Impulse responses of all variables to a positive monetary policy shock.
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the response of real money balance is insigni�cant. This last result is consistent with the

view that both money supply and the price level responds in similar ways (money supply

falls and the price level falls). Looking more closely at the responses of the variables to

the other two shocks we also �nd inconsistent e�ects. It seems as if our identi�cation is

incorrect or incomplete. The cointegration vector used here is consistent with a standard

money demand function and this vector is used to identify the two groups of shocks. But,

it may be that the cointegration tests understate the number of vectors (all variables

may be stationary around linear trends). Or, the cointegration tests may overstate the

number of vectors such that all variables are non-stationary. To further analyze this,

one could estimate a VAR in levels but with linear trends and check the stability of this

model. This is not required, though. A good answer should include an interpretation of

the results and an evaluation whether the �ndings are consistent with standard theory.

Extra credit should be given for answers that also include estimates and stability tests of

a standard VAR model with data in levels and a linear trend (or maybe also a quadratic

trend).

The forecast error variance also shown below suggest that monetary policy shocks explain

sizable portions of output at least in the short-run. Con�dence bands are constructed

using Efron's bootstrap method.

17. Show a plot of the accumulated permanent shock(s) and the three variables. Discuss the

results. Is it possible to draw conclusions regarding the driving forces of the variables?

Answer: The graph below shows the accumulated structural shocks wt. Again, these

shocks do not resemble the time series shown above and therefore again questions the

identi�cation. The accumulated permanent shocks represent the non-stationary part of

the time series and a weighted average (through Υ) determines the permanent part of
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Figure 3: Forecast error variance decomposition, positive monetary policy shock.
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each time series. A good answer explains how the graph is constructed and also adds a

short discussion.

Extensions

18. An alternative to using the MATLAB solver to compute the B−1
0 matrix is to use the

approach suggested by Warne (1993). Outline this approach and show how the Warne

approach can be used to identify the structural shocks in your preferred VEC model.

Discuss both the identi�cation of permanent and transitory shocks.

Answer: Following Warne we �rst de�ne the matrix Υ0 to identify the the two perma-

nent shocks and then we de�ne the U matrix. We have one restriction that we need to

impose to identify the two permanent shocks. Assume that real money balance shocks

cannot a�ect output in the long-run, this corresponds to a zero restriction in the �rst

row and second column of Υ. To �nd an Υ0 matrix leading us to the Υ matrix we �rst

make use of the restriction that β′Υ0 = 0. This implies that

Υ0 =

 1 0

0 1

−1/β1,3 −β1,2/β1,3

 .
where we have normalized β on the �rst element. From Warne we know that Υ = Υ0π

where π is a lower triangular matrix. The matrix Υ is then given by 1 0

0 1

−1/β1,3 −β1,2/β1,3

[ π11 0

π21 π22

]
=

 π11 0

π21 π22

−π11/β1,3 − (β1,2π21)/β1,3 −β1,2π22/β1,3


� 14 �



Figure 4: Accumulated structural shocks.

0 50 100 150 200 250 300
-20

-10

0

10
Productivity shock

0 50 100 150 200 250 300
-10

0

10

20
Real money balance shock

0 50 100 150 200 250 300
-10

0

10

20
Monetary policy shock

where we see that the identifying restriction that the second permanent shock has no

long-run e�ect on the �rst variable is imposed.

Since we have only 1 transitory shock, U =
[

0 0 1
]
.

It is now straightforward to code this. For this ordering of the variables we can verify

that the B−1
0 matrix found using the Warne method is equal to the one found by the

solver. It could be that we need to switch signs on one or two columns of the solver

solution, but the absolute values are identical.

19. Code this identi�cation and compute the implied B−1
0 matrix and show that it is identical

to the one found by the solver. Please, provide the code you are using in the appendix.

Answer: It is enough here to show that the B−1
0 matrix obtained using the Warne

approach is equal to the solution obtained using the MATLAB solver. The answer must

include the code used to compute the closed form solution. The code used could look

like (the code is adapted from the KLversusWarne.m �le). The answer must include the

MATLAB code and the de�nition of the matrices above.

% Warne identification

Upsilon0 = [1 0 -1/beta(1,3);0 1 -beta(1,2)/beta(1,3)]';

MHLP=inv(Upsilon0'*Upsilon0)*Upsilon0'*Xi;

pipit=MHLP*SIGMA*MHLP';

pimat=chol(pipit)';

Upsilon=Upsilon0*pimat;

Fk=inv(Upsilon'*Upsilon)*Upsilon'*Xi;

display(Fk,'Fk matrix');
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Umat=zeros(1,3);

i=1;

while i<=r;

Umat(i,K-i+1)=1;

i=i+1;

end;

% Check that identification of transitory shocks is valid

if det(Umat*alpha)==0

display('Identification of transitory shock is invalid');

else

display('Identification of transitory shocks is valid');

end

xi=alpha*inv(Umat*alpha);

i=1;

while i<=K;

j=1;

while j<=r;

if abs(xi(i,j))<=1E-12;

xi(i,j)=0;

else

end

j=j+1;

end

i=i+1;

end

qr=chol(xi'*inv(SIGMA)*xi)';

Fr=inv(qr)*xi'*inv(SIGMA);

display(Fr,'Fr matrix');

invB0 = inv([Fk;Fr]);

invB0 = [-invB0(:,1) invB0(:,2:3)];

display(invB0,'B0�-1 matrix');

display(-Xi*invB0,'(3) C(1)*B0�-1 should be Upsilon zeros(K,r)');

display(inv(invB0)*SIGMA*inv(invB0)','(4) Covariance matrix of structural shocks

w_t should be I_K');

display(inv(qr)*xi'*inv(SIGMA)*xi*inv(qr'),'Should be diagonal');
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